View unanswered posts | View active topics It is currently Tue Nov 21, 2017 12:58 am



← Back to the Calcudoku puzzle page




Reply to topic  [ 4 posts ] 
 Full Analytical Solution for Difficult KS on Friday 2/10/17 
Author Message

Posted on: Tue Feb 14, 2017 6:38 am




Posts: 37
Joined: Mon May 05, 2014 4:59 am
Post Full Analytical Solution for Difficult KS on Friday 2/10/17
Here's a full analytical solution for the difficult killer sudoku on 2/10/2017:


Image


First, we know that g5 = 6 by using known values for columns h-i.

Then we quickly get h5-6 = [1,3], i4-5 = [2,8], and i6-7 = [5,9].

The 8 cell at h1 has to have a 1, so i1 = 1, which also makes h1-2 = [2,5] and h3-4 = [4,9].


Image


g4 = 7 and g2-3 = [3,8] are the only options for the 18 cage, which also makes g1 = [4,9].

Known cage values in the a1-c3 block mean that c1,3 = 6. c1 can't be 1 or 5, so c1,3 = [2,4].

This means that a2-3 = [1,6] and then a8-9 = [5,9].

With bracketing 4s in c1,c3,g1,h3, then c,h1 must be either [2,4] or [4,9]. Using known values for the d1-f3 block, this means that d,f3 adds up to 5 or 12. The only usable possibilities are d,f3 = [3,2],[3,9],[5,7]. This also means that c4 = [5,9].


Image


Using known values for the a4-c6 block, a6,c4,c6 adds up to 15. c4 can't be 9 because c6 is blocked for [2,4] and a6 is blocked for [1,5].

This means that c4 = 5, leading to c3 = 2, d3 = 9. After some more clearing up, we have:


Image


There can't be an 8 in the 22 cage at e1, so the 14 cage at d2 = [1,5,8].

This means that f2 = 4 and e1,2 = [2,7], which also makes h1 = 5 and h2 = 2.

Using known values for the a4-c9 blocks, we find that d6,9 = [1,2].

Using known values for the d4-f6 block, we find that e7 must be the same as d6.

d6 and e7 can't be 1 because that would block the 1 in the 14 cage at d2, so d6 and e7 = 2, and d9 = 1. After some clearing, we get:


Image


From here on out, it's pretty easy.

f4-5 = [1,9], then e-f6 = [6,8], then c6-7 = [6,7], then a6-7 = [3,7], then a-b1 = [8,3], then b7-8 = [1,4], etc.

End result:


Image


Profile

Posted on: Tue Feb 14, 2017 10:26 am




Posts: 224
Joined: Tue Mar 01, 2016 10:03 pm
Post Re: Full Analytical Solution for Difficult KS on Friday 2/10
Many thanks for the detailed step by step analysis. I had a look at what I had saved before giving up/ running out of time last Friday and I had done all the steps up to your third diagram apart from the 5,9 in c4 and 3,5,9 in d3. I'm struggling to follow your reasoning in the final paragraph before the third diagram. How do you conclude that c,h1 must be 2,4 or 4,9?


Profile

Posted on: Tue Feb 14, 2017 11:47 am




Posts: 224
Joined: Tue Mar 01, 2016 10:03 pm
Post Re: Full Analytical Solution for Difficult KS on Friday 2/10
paulv66 wrote:
Many thanks for the detailed step by step analysis. I had a look at what I had saved before giving up/ running out of time last Friday and I had done all the steps up to your third diagram apart from the 5,9 in c4 and 3,5,9 in d3. I'm struggling to follow your reasoning in the final paragraph before the third diagram. How do you conclude that c,h1 must be 2,4 or 4,9?


Sorry, I must have been half asleep. I had another look at it and it makes perfect sense. I think my problem on Friday (and the previous Friday) was that I left it too late to start doing the KS and then panicked when I was struggling to solve it.

Hopefully I'll do better this week.

Thanks again for the analysis.

Paul


Profile

Posted on: Wed Feb 15, 2017 11:12 pm




Posts: 37
Location: Karviná
Joined: Sun Feb 03, 2013 3:25 am
Post Re: Full Analytical Solution for Difficult KS on Friday 2/10
My way to solve this puzzle was different from firefly. I helped myself by concentrating on placement of number 6 into the bottom left nonet. Probably more T&E, though. [rolleyes]

First I enter another pencil marks: i8–9 = [3,4] and b6 = [7,9] (relating to a sum of the rows 6–9 (170) and h6)

Image

So 6 in the bottom left nonet is located either in the cage "14" (b9 + c8–9), or "15":
1) "14": it’s remaining 8:
a) [1,2,5]: d9 = 5 → a7 + c7 = 17 → impossible;
b) [1,3,4]: the cage "5" must be [2,3] → d9 = 3 → i9 = 4 → c8 = 4 → duplicated/impossible
2) Thus "15": correct.

Then 6 in the middle left nonet is in b4; a4–5 = [2,4]; a1 = 8; c1–d1 = [4,6]; etc…

Image


Profile
Display posts from previous:  Sort by  
Reply to topic   [ 4 posts ] 

You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum

Search for:
Jump to:  
cron
All forum contents © Patrick Min, and by the post authors.

Forum software phpBB © 2000, 2002, 2005, 2007 phpBB Group.
Designed by STSoftware.