View unanswered posts | View active topics It is currently Thu Aug 13, 2020 11:23 am ← Back to the Calcudoku puzzle page

 Page 2 of 3 [ 21 posts ] Go to page Previous  1, 2, 3  Next
 Print view Previous topic | Next topic
-1 to +4 puzzle
Author Message

Posted on: Sun Dec 08, 2019 11:58 am

Posts: 2714
Joined: Thu May 12, 2011 11:58 pm
Re: -1 to +4 puzzle
beaker wrote:
Curious to know from other users if they have had one of these as a bonus configuration (-1 to +4)

So far, 79 people have had this specific puzzle as a bonus puzzle

(well 79 people solved it, rather)(including clm )

Posted on: Sun Dec 08, 2019 1:01 pm

Posts: 786
Joined: Fri May 13, 2011 6:51 pm
Re: -1 to +4 puzzle
pnm wrote:
beaker wrote:
Curious to know from other users if they have had one of these as a bonus configuration (-1 to +4)

So far, 79 people have had this specific puzzle as a bonus puzzle

(well 79 people solved it, rather)(including clm )

When solving this type of Calcudoku (or any other type), by writing in the "old" books or in an independent piece of paper, I usually verify carefully the final solution. This time I made a terrible mistake (one always learns something): I was busy doing other things so, in parallel, I took a ballpoint pen and quickly solve the puzzle in a paper handkerchief. Usually, in the daily task, I am accustomed to think that after my analytical process the final verification is not really necessary, apart of the very useful "Continuous error checking" feature. Now I am more humble, and assumed something essential: that one must always carefully verify the final solution.

"Robotically", I considered the total sum of two columns as being 20 , instead of 18, in this -1 to 4 case [I do not make this mistake when solving similar book puzzles (let's say, -5 to 4, -1 to 7, -2 to 3, etc.) or one that we have every thursday, the symmetrical -3 to 3, where the sum is 0].

Anyway, and thanks to beaker, this topic has given me the opportunity of doing a step by step solution (without complementary graphics) for a -1 to 4 6x6 Calcudoku.

Posted on: Sun Dec 08, 2019 11:46 pm

Posts: 753
Joined: Fri May 13, 2011 1:37 am
Re: -1 to +4 puzzle
80 users and 79 solves ...... and I am the non-solver.....a bit depressing

Posted on: Sun Dec 08, 2019 11:50 pm

Posts: 682
Location: Dublin, Ireland
Joined: Tue Mar 01, 2016 10:03 pm
Re: -1 to +4 puzzle
beaker wrote:
80 users and 79 solves ...... and I am the non-solver.....a bit depressing

There could be a lot of other non solvers. I had a look at the puzzle and it's quite tricky!

Posted on: Mon Dec 09, 2019 12:47 am

Posts: 753
Joined: Fri May 13, 2011 1:37 am
Re: -1 to +4 puzzle
If you look up at previous posts, 80 users have been given this bonus puzzle and all (but one:me) plus clm have completed it successfully......time to put this experience in past but have learned more about these puzzles but, frankly, hope to never see one again.

Posted on: Mon Dec 09, 2019 1:31 am

Posts: 682
Location: Dublin, Ireland
Joined: Tue Mar 01, 2016 10:03 pm
Re: -1 to +4 puzzle
beaker wrote:
If you look up at previous posts, 80 users have been given this bonus puzzle and all (but one:me) plus clm have completed it successfully......time to put this experience in past but have learned more about these puzzles but, frankly, hope to never see one again.

Maybe I'm interpreting Patrick's post differently to how you're interpreting it. He started off by saying 79 people had been given the puzzle and then clarified by saying that 79 people had solved it. Anyway, I didn't know how to access the first few bonus puzzles I qualified for and then became quite paranoid about doing them as soon as they became available for fear I would leave it too late.

I'll take your advice and will treat future -1 to 4 puzzles with a great deal of caution!

Posted on: Mon Dec 09, 2019 9:42 am

Posts: 2714
Joined: Thu May 12, 2011 11:58 pm
Re: -1 to +4 puzzle
beaker wrote:
80 users and 79 solves ...... and I am the non-solver.....a bit depressing

No, 79 people solved it, I don't know how many people got the puzzle (== 80 or more).

I could find out how many did, but that's not straight-forward (requires some digging through log files..).

Posted on: Sun May 10, 2020 10:21 pm

Posts: 38
Joined: Mon May 05, 2014 4:59 am
Re: -1 to +4 puzzle
Another thing that can be useful on these negative range puzzles is just to convert them to the normal range. Addition/subtraction clusters translate very handily, although multiplication/division clusters don't.

In the case of this puzzle, the only multiplication/division clusters were all 0's, which were already sort of wildcard clusters.

In order to convert (-1 to 4) into a (1 to 6), you just need to add 2 to each cell value, of course. That means that a 2-cell cluster that is 0+ becomes 4+ (each cell adds 2, so 4 total for the 2-cell cluster). An 8+ 3-cell cluster becomes a 14+, etc.

For subtraction clusters, the format is one positive number and the rest subtracted from it, so a 2- 2-cell cluster remains 2- (one cell is +2, the other is -2), while a 2- 3-cell cluster would end up as a 0- (one cell is +2, the remaining two are each -2, for a -2 total).

Obviously, this isn't much help if you're just trying to solve the puzzle on this website alone, but if you use scratch paper or any other user-entered data tool (Excel spreadsheet, in my case), it can make things much easier.

Posted on: Mon May 11, 2020 10:12 pm

Posts: 786
Joined: Fri May 13, 2011 6:51 pm
Re: -1 to +4 puzzle
firefly wrote:
Another thing that can be useful on these negative range puzzles is just to convert them to the normal range. Addition/subtraction clusters translate very handily, although multiplication/division clusters don't.

...

Thanks, firefly.
I find this idea really interesting, and possibly with very useful applications in the future (for instance, in the 7x7 subtraction only puzzle, we could decrease by 1 all digits and solve the corresponding 0 to 6 puzzle, keeping the subtraction cages exactly as they are, of course, and see what happens ...).

This is a different concept of "The replacement" that I exposed in the Forum in the post on Sep 12, 2012, since now a different pool of numbers is used with the purpose of simplifying the solution process, by eliminating the 0 and the -1. Here, there is not a pure "replacement" since the "transformation" consists in shifting up all digits by adding 2 in every cell.

How the addition and subtraction cages (with 2, 3 or more cells) transform is very well exposed.

I have solved the "transformed" puzzle considering the "wildcard clusters" as no-op cages without a result and without an operator (blank cages) and, though it's a tricky process (and perhaps, in this particular case, a little trickier than solving the original -1 to 4 puzzle possibly due to loss of information), I have arrived to a unique solution (in the new range 1 to 6).

The idea is very smart and it's difficult to imagine the possibilities. I have been fighting much in the past with the idea of "transforming" any puzzle in such a way that the solution becomes clearer. The main difficulty always arises with the multiplication and division cages, as in this case.

Posted on: Sat Jul 18, 2020 3:09 pm

Posts: 81
Joined: Tue Apr 24, 2012 7:47 pm
Re: -1 to +4 puzzle
I'm so glad I created my -4 to +4 tables when I did, because THIS is what I got for my most recent bonus puzzle!

It took some trial and error in several cages, but I eventually arrived at the correct solution. I had a no-op bonus puzzle before this one IIRC. I can only imagine the chaos that would ensue if there were a bonus puzzle with negative numbers AND no-op in it!

skeeter84

Display posts from previous:  Sort by
 Page 2 of 3 [ 21 posts ] Go to page Previous  1, 2, 3  Next

 You cannot post new topics in this forumYou cannot reply to topics in this forumYou cannot edit your posts in this forumYou cannot delete your posts in this forum

Search for:
 Jump to:  Select a forum ------------------ English    Announcements    Calcudoku General    Other number stuff    Solving strategies and tips    Specific puzzles / your own puzzles    Timed Puzzles    Bugs and errors    Killer Sudoku    Sudoku Nederlands    Aankondigingen    Calcudoku Algemeen    Oplostips en strategieën Italiano    Calcudoku Generale    Strategie e consigli per risolvere Español    Avisos    Calcudoku - General    Estrategias de solución y aspectos relevantes
All forum contents © Patrick Min, and by the post authors.

Forum software phpBB © 2000, 2002, 2005, 2007 phpBB Group.
Designed by STSoftware.